Factor D Inhibition with ACH-4471 Reduces Complement Alternative Pathway Hyperactivity and Proteinuria in C3 Glomerulopathy: Preliminary Proof-of-Concept Data

Hetal Kocinsky¹, Cass Kelleher¹, Angela Bulawski¹, Michael Geffner¹, Mingjun Huang¹, Joanna Yang¹, Wengang Yang¹, Yongsen Zhao¹, Nicole van de Kar², Jack Wetzels³, Koen Bouman⁴, Terence Cook⁵, Tom Barbour⁶

¹Achillion Pharmaceuticals, R&D, New Haven, CT, ²Radboud UMC Amalia Children's Hospital, Dept of Pediatric Nephrology, Nijmegen, Netherlands, ³Radboud UMC, Dept of Nephrology, Nijmegen, Netherlands, ⁴ZNA Nierkliniek Middelheim, Dept of Nephrology, Antwerp, Belgium, ⁵Imperial College, Dept of Medicine, London, United Kingdom, ⁶Royal Melbourne Hospital, Dept of Medicine, Melbourne, Australia.

C3 Glomerulopathy (C3G)

- C3G
 - Dense deposit disease (DDD)
 - C3 glomerulonephritis (C3GN)
- Estimated prevalence of 8–12 people affected per million in major markets
 - Incidence rate of 1–2 per million patients diagnosed with C3G on an annual basis
- There are no approved treatments indicated for patients with C3G
 - Non-specific treatment approaches include blood pressure control and broad immunosuppression
- ACH-4471: First-in-class, selective, oral complement alternative pathway (AP) inhibitor targeting factor D serine protease

Barbour et al. (2015); NICE C3G Evidence Summary (2015).

Sources: Servais et al (2013); Medjeral-Thomas et al (2014); Data on File. Achillion Pharmaceuticals. 2016.

May 26, 2018 55th ERA-EDTA Congress

C3G: A Disease of Alternative Pathway (AP) Hyperactivity

- Increased consumption of intact C3
- Excess production of C3 fragments
- C3 fragments deposited in glomeruli

C3G: A Disease of Alternative Pathway (AP) Hyperactivity

- Increased consumption of intact C3
- Excess production of C3 fragments
- C3 fragments deposited in glomeruli

ACH-4471: An AP Inhibitor

ACH-4471 is the first drug designed to target the underlying pathophysiology of C3G

- ACH-4471 inhibits factor D, selectively reducing AP activity
- Reduction of AP hyperactivity should prevent further glomerular C3 deposition

C3G: A Disease of Alternative Pathway (AP) Hyperactivity

- Increased consumption of intact C3
- Excess production of C3 fragments
- C3 fragments deposited in glomeruli

ACH-4471: An AP Inhibitor

- ACH-4471 is the first drug designed to target the underlying pathophysiology of C3G
- ACH-4471 inhibits factor D, selectively reducing AP activity
- Reduction of AP hyperactivity should prevent further glomerular C3 deposition

ACH-4471: First-in-Class Oral Factor D Inhibitor

ACH-4471

- Potent and specific modulator of AP
- More than 150 healthy volunteers exposed with acceptable safety profile at target exposures

C3G CLINICAL DEVELOPMENT STUDIES

- Ongoing 14-day Phase 2a study (data presented today)
- Two ongoing Phase 2b proof-of-concept (POC) studies
 - 6-month, randomized, placebo-controlled trial
 - 12-month, open-label POC trial

PAROXYSMAL NOCTURNAL HEMOGLOBINURIA (PNH) CLINICAL DEVELOPMENT

- Patients have received drug for more than one year with an acceptable safety profile
- POC established in PNH based on improvement in hemoglobin, lactase dehydrogenase, PNH clone size and FACIT scores

C3 GLOMERULOPATHY (C3G)

Phase 2 14-day Trial in Patients with C3G or IC-MPGN

DAY 1

OUTCOME MEASURES

(P.III

%=

DAY 49

TREATMENT SCREENING 14 DAYS

TAPER 7 DAYS **FOLLOW UP** 28 DAYS

CRITERIA

Must have diagnosis of C3G or IC-MPGN based on central review of historical biopsy

Low C3 with normal/ near-normal C4

CLINICAL TRIAL DESIGN

GROUP 1

2 patients received ACH-4471 100mg TID x 14 days followed by 7-day taper

GROUP 2

Up to 8 additional patients to receive ACH-4471 at doses up to 200mg TID x 14 days followed by 7-day taper

Status: Data available for 4 patients; recruitment ongoing

Changes in AP biomarkers:

- Intact C3 levels
- C3 fragments
- Bb/Ba
- Clinical manifestations of disease: albumin to creatinine ratio (ACR), BP, eGFR
- Safety and tolerability
- Pharmacokinetic profile

https://www.clinicaltrials.gov/ct2/show/NCT03124368

Key Baseline Patient Characteristics

Group	Patient	Age (Y)	Sex	Weight (kg)	Urine dipstick for protein	ACR (0-2.5 mg/mmol) Day 1 Pre-dose	BP (mmHg)	Renal Biopsy Diagnosis
1	А	30	М	67	3+	259.3	126/72	C3GN
	В	19	М	68	3+	580.3	123/80	IC-MPGN*
2	С	27	М	90	Trace	57.7	129/83	C3GN
	D	22	M	39	3+	276.3	119/74	C3GN

- Concomitant medication doses were stable for at least one month prior to the first dose of study drug, and included mycophenolate mofetil (n=2), prednisone (n=2), ACE/ARB (n=4), atorvastatin (n=2), and spironolactone (n = 3)
- eGFR > 60 ml/min/1.73m² in all patients

May 26, 2018

^{*} Final review by central pathologist confirmed that the historical biopsy met criteria for IC-MPGN

Trends in AP Activity with 14-Day ACH-4471 Treatment

- Trends in AP biomarkers show reduction in AP hyperactivity with ACH-4471 treatment
- Data suggest that further improvements in AP hyperactivity may be observed with longer treatment durations

Evidence of fD Inhibition and the AP Response

PATIENT	BIOMARKER	BASELINE
	Serum C3	Low
Α	Fragment C3* (% of total)	High
	Bb	Normal
	Serum C3	Low
В	Fragment C3* (% of total)	High
	Bb	High
	Serum C3	Low
C	Fragment C3 [*] (% of total)	Normal
	Bb	Normal
	Serum C3	Near lower limit of normal
D	Fragment C3* (% of total)	Fragment undetectable
	Bb	Normal

Red, in the baseline and post-treatment columns, represents a value that is consistent with AP hyperactivity.

Green in the on-treatment column indicates evidence for AP inhibition.

^{*} Fragment C3 (% of total) normal range is derived from normal ranges of components

Evidence of fD Inhibition and the AP Response

]		
PATIENT	BIOMARKER	BASELINE	ON-TREATMENT
	Serum C3	Low	Increased
Α	Fragment C3* (% of total)	High	Decreased
	Bb	Normal	Slightly decreased
	Serum C3	Low	Slightly increased
В	Fragment C3* (% of total)	High	Decreased
	Bb	High	Decreased
	Serum C3	Low	Increased
C	Fragment C3* (% of total)	Normal	Normal
	Bb	Normal	Decreased
	Serum C3	Near lower limit of normal	Increased
D	Fragment C3* (% of total)	Fragment undetectable	Fragment undetectable
	Bb	Normal	Decreased

Red, in the baseline and post-treatment columns, represents a value that is consistent with AP hyperactivity.

Green in the on-treatment column indicates evidence for AP inhibition.

 $[\]mbox{^*}$ Fragment C3 (% of total) normal range is derived from normal ranges of components.

Evidence of fD Inhibition and the AP Response

PATIENT	BIOMARKER	BASELINE		ON-TREATMENT		POST-TREATMENT
	Serum C3	Low		Increased		Decreased to baseline
Α	Fragment C3* (% of total)	High		Decreased		Increased to baseline
	Bb	Normal		Slightly decreased		Normal
	Serum C3	Low		Slightly increased		Decreased to baseline
В	Fragment C3* (% of total)	High		Decreased		Remains decreased
	Bb	High		Decreased		Increased to baseline
	Serum C3	Low	П	Increased		Decreased to baseline
C	Fragment C3* (% of total)	Normal		Normal		Normal
	Bb	Normal		Decreased		Normal
	Serum C3	Near lower limit of normal		Increased		Decreased to baseline
D	Fragment C3* (% of total)	Fragment undetectable		Fragment undetectable		Fragment undetectable
	Bb	Normal		Decreased		Normal

Red, in the baseline and post-treatment columns, represents a value that is consistent with AP hyperactivity.

Green in the on-treatment column indicates evidence for AP inhibition.

* Fragment C3 (% of total) normal range is derived from normal ranges of components

ON-TARGET EFFECT WITH REDUCED AP HYPERACTIVITY

Reduction in ACR with 14-Day ACH-4471 Treatment

Patient C: ACR (mg/mmol)

Patient B: ACR (mg/mmol)

Patient D: ACR (ng/mmol) and 24 hr protein excretion (g/day)

- Stable eGFR and blood pressure observed
- Patients A, B, & C had approximately 50% reduction in ACR
- Patient D had highly variable ACR values; as a result two 24 hr urinary proteins were collected on days 14 (0.7g/day) and 17 (2.44 g/day)

= Albumin:Creatinine Ratio (ACR)
= 24 hr Urinary Protein (UP)

24hr UP (g/day)

May 26, 2018 55th ERA-EDTA Congress 14

ACH-4471: A Potential Innovative Treatment for C3G

- C3G is a disease of AP hyperactivity with C3 fragment deposition in glomeruli
- ACH-4471 is an oral, potent, factor D inhibitor that reduces AP activity
 - Data presented today demonstrate ACH-4471 can mitigate the AP hyperactivity in C3G
 - Short-term treatment with ACH-4471 was associated with approximately 50% reduction in ACR
 - Acceptable safety profile in C3G to date (no treatment-emergent serious adverse events or discontinuations due to adverse events)
- Ongoing studies include
 - Proof-of-mechanism study (ACH471-201) recruiting
 - 6-month, randomized, placebo-controlled, proof-of-concept study (ACH471-204) — recruiting
 - 12 month, open-label, proof-of-concept study (ACH471-205) recruiting

Acknowledgements

PATIENTS AND THEIR CAREGIVERS

CLINICAL TRIAL SITES AND STAFF

ACHILLION TEAM MEMBERS

- Clinical, Regulatory, CMC, Project Management
- Chemistry, DMPK, Toxicology, and Complement biology

Factor D Inhibition with ACH-4471 Reduces Complement Alternative Pathway Hyperactivity and Proteinuria in C3 Glomerulopathy: Preliminary Proof-of-Concept Data

Hetal Kocinsky¹, Cass Kelleher¹, Angela Bulawski¹, Michael Geffner¹, Mingjun Huang¹, Joanna Yang¹, Wengang Yang¹, Yongsen Zhao¹, Nicole van de Kar², Jack Wetzels³, Koen Bouman⁴, Terence Cook⁵, Tom Barbour⁶

¹Achillion Pharmaceuticals, R&D, New Haven, CT, ²Radboud UMC Amalia Children's Hospital, Dept of Pediatric Nephrology, Nijmegen, Netherlands, ³Radboud UMC, Dept of Nephrology, Nijmegen, Netherlands, ⁴ZNA Nierkliniek Middelheim, Dept of Nephrology, Antwerp, Belgium,, ⁵Imperial College, Dept of Medicine, London, United Kingdom, ⁶Royal Melbourne Hospital, Dept of Medicine, Melbourne, Australia.

